Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1673, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242939

RESUMEN

Efficient monitoring of biodiversity-rich areas in conflict-affected areas with poor rule of law requires a combination of different analytical approaches to account for data biases and incompleteness. In the upland Amazon region of Venezuela, in Canaima National Park, we initiated biodiversity monitoring in 2015, but it was interrupted by the establishment of a large-scale mining development plan in 2016, compromising the temporal and geographical extent of monitoring and the security of researchers. We used a resource selection function model framework that considers imperfect detectability and supplemented detections from camera trap surveys with opportunistic off-camera records (including animal tracks and direct sighting) to (1) gain insight into the value of additional occurrence records to accurately predict wildlife resource use in the perturbated area (deforestation, fire, swidden agriculture, and human settlements vicinity), (2) when faced with security and budget constraints. Our approach maximized the use of available data and accounted for biases and data gaps. Adding data from poorly sampled areas had mixed results on estimates of resource use for restricted species, but improved predictions for widespread species. If budget or resources are limited, we recommend focusing on one location with both on-camera and off-camera records over two with cameras. Combining camera trap records with other field observations (28 mammals and 16 birds) allowed us to understand responses of 17 species to deforestation, 15 to fire, and 13 to swidden agriculture. Our study encourages the use of combinations of methods to support conservation in high-biodiversity sites, where access is restricted, researchers are vulnerable, and unequal sampling efforts exist.


Asunto(s)
Animales Salvajes , Conservación de los Recursos Naturales , Animales , Humanos , Venezuela , Conservación de los Recursos Naturales/métodos , Biodiversidad , Mamíferos/fisiología
2.
Nat Commun ; 14(1): 8070, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057312

RESUMEN

Dung removal by macrofauna such as dung beetles is an important process for nutrient cycling in pasturelands. Intensification of farming practices generally reduces species and functional diversity of terrestrial invertebrates, which may negatively affect ecosystem services. Here, we investigate the effects of cattle-grazing intensification on dung removal by dung beetles in field experiments replicated in 38 pastures around the world. Within each study site, we measured dung removal in pastures managed with low- and high-intensity regimes to assess between-regime differences in dung beetle diversity and dung removal, whilst also considering climate and regional variations. The impacts of intensification were heterogeneous, either diminishing or increasing dung beetle species richness, functional diversity, and dung removal rates. The effects of beetle diversity on dung removal were more variable across sites than within sites. Dung removal increased with species richness across sites, while functional diversity consistently enhanced dung removal within sites, independently of cattle grazing intensity or climate. Our findings indicate that, despite intensified cattle stocking rates, ecosystem services related to decomposition and nutrient cycling can be maintained when a functionally diverse dung beetle community inhabits the human-modified landscape.


Asunto(s)
Escarabajos , Ecosistema , Animales , Bovinos , Biodiversidad , Clima , Granjas , Heces
3.
Ecol Evol ; 8(2): 841-851, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29375758

RESUMEN

Species distribution models (SDM) can be valuable for identifying key habitats for conservation management of threatened taxa, but anthropogenic habitat change can undermine SDM accuracy. We used data for the Red Siskin (Spinus cucullatus), a critically endangered bird and ground truthing to examine anthropogenic habitat change as a source of SDM inaccuracy. We aimed to estimate: (1) the Red Siskin's historic distribution in Venezuela; (2) the portion of this historic distribution lost to vegetation degradation; and (3) the location of key habitats or areas with both, a high probability of historic occurrence and a low probability of vegetation degradation. We ground-truthed 191 locations and used expert opinion as well as landscape characteristics to classify species' habitat suitability as excellent, good, acceptable, or poor. We fit a Random Forest model (RF) and Enhanced Vegetation Index (EVI) time series to evaluate the accuracy and precision of the expert categorization of habitat suitability. We estimated the probability of historic occurrence by fitting a MaxLike model using 88 presence records (1960-2013) and data on forest cover and aridity index. Of the entire study area, 23% (20,696 km2) had a historic probability of Red Siskin occurrence over 0.743. Furthermore, 85% of ground-truthed locations had substantial reductions in mean EVI, resulting in key habitats totaling just 976 km2, in small blocks in the western and central regions. Decline in Area of Occupancy over 15 years was between 40% and 95%, corresponding to an extinction risk category between Vulnerable and Critically Endangered. Relating key habitats with other landscape features revealed significant risks and opportunities for proposed conservation interventions, including the fact that ongoing vegetation degradation could limit the establishment of reintroduced populations in eastern areas, while the conservation of remaining key habitats on private lands could be improved with biodiversity-friendly agri- and silviculture programs.

4.
Rev Biol Trop ; 61(1): 89-110, 2013 Mar.
Artículo en Español | MEDLINE | ID: mdl-23894965

RESUMEN

The development of efficient sampling protocols is an essential prerequisite to evaluate and identify priority conservation areas. There are f ew protocols for fauna inventory and monitoring in wide geographical scales for the tropics, where the complexity of communities and high biodiversity levels, make the implementation of efficient protocols more difficult. We proposed here a simple strategy to optimize the capture of dung beetles, applied to sampling with baited traps and generalizable to other sampling methods. We analyzed data from eight transects sampled between 2006-2008 withthe aim to develop an uniform sampling design, that allows to confidently estimate species richness, abundance and composition at wide geographical scales. We examined four characteristics of any sampling design that affect the effectiveness of the sampling effort: the number of traps, sampling duration, type and proportion of bait, and spatial arrangement of the traps along transects. We used species accumulation curves, rank-abundance plots, indicator species analysis, and multivariate correlograms. We captured 40 337 individuals (115 species/morphospecies of 23 genera). Most species were attracted by both dung and carrion, but two thirds had greater relative abundance in traps baited with human dung. Different aspects of the sampling design influenced each diversity attribute in different ways. To obtain reliable richness estimates, the number of traps was the most important aspect. Accurate abundance estimates were obtained when the sampling period was increased, while the spatial arrangement of traps was determinant to capture the species composition pattern. An optimum sampling strategy for accurate estimates of richness, abundance and diversity should: (1) set 50-70 traps to maximize the number of species detected, (2) get samples during 48-72 hours and set trap groups along the transect to reliably estimate species abundance, (3) set traps in groups of at least 10 traps to suitably record the local species composition, and (4) separate trap groups by a distance greater than 5-10km to avoid spatial autocorrelation. For the evaluation of other sampling protocols we recommend to, first, identify the elements of sampling design that could affect the sampled effort (the number of traps, sampling duration, type and proportion of bait) and their spatial distribution (spatial arrangement of the traps) and then, to evaluate how they affect richness, abundance and species composition estimates.


Asunto(s)
Escarabajos/clasificación , Animales , Biodiversidad , Entomología/métodos , Entomología/normas , Humanos , Densidad de Población , Venezuela
5.
Rev. biol. trop ; 61(1): 89-110, Mar. 2013. ilus
Artículo en Español | LILACS | ID: lil-674064

RESUMEN

The development of efficient sampling protocols is an essential prerequisite to evaluate and identify priority conservation areas. There are few protocols for fauna inventory and monitoring in wide geographical scales for the tropics, where the complexity of communities and high biodiversity levels, make the implementation of efficient protocols more difficult. We proposed here a simple strategy to optimize the capture of dung beetles, applied to sampling with baited traps and generalizable to other sampling methods. We analyzed data from eight transects sampled between 2006-2008 with the aim to develop an uniform sampling design, that allows to confidently estimate species richness, abundance and composition at wide geographical scales. We examined four characteristics of any sampling design that affect the effectiveness of the sampling effort: the number of traps, sampling duration, type and proportion of bait, and spatial arrangement of the traps along transects. We used species accumulation curves, rank-abundance plots, indicator species analysis, and multivariate correlograms. We captured 40 337 individuals (115 species/morphospecies of 23 genera). Most species were attracted by both dung and carrion, but two thirds had greater relative abundance in traps baited with human dung. Different aspects of the sampling design influenced each diversity attribute in different ways. To obtain reliable richness estimates, the number of traps was the most important aspect. Accurate abundance estimates were obtained when the sampling period was increased, while the spatial arrangement of traps was determinant to capture the species composition pattern. An optimum sampling strategy for accurate estimates of richness, abundance and diversity should: (1) set 50-70 traps to maximize the number of species detected, (2) get samples during 48-72 hours and set trap groups along the transect to reliably estimate species abundance, (3) set traps in groups of at least 10 traps to suitably record the local species composition, and (4) separate trap groups by a distance greater than 5-10km to avoid spatial autocorrelation. For the evaluation of other sampling protocols we recommend to, first, identify the elements of sampling design that could affect the sampled effort (the number of traps, sampling duration, type and proportion of bait) and their spatial distribution (spatial arrangement of the traps) and then, to evaluate how they affect richness, abundance and species composition estimates.


El presente trabajo propone una estrategia sencilla de optimización del diseño muestreal para escarabajos coprófagos que puede ser aplicada a muestreos basados en trampas atrayentes en amplias escalas geográficas y generalizada a otros tipos de muestreo. Para ello, analizamos muestras colectadas en ocho localidades con hábitats contrastantes y diferentes características del muestreo entre 2006-2008. Se capturaron 40 337 ejemplares (115 especies/ morfoespecies, de 23 géneros). El número de trampas fue el aspecto del muestreo más importante para obtener estimadores de riqueza confiable. El tiempo de muestreo para generar estimadores precisos de abundancia y la disposición espacial de las trampas para captar adecuadamente la diferencias en composición entre localidades. Sugerimos que una estrategia óptima de muestreo para obtener estimadores precisos de riqueza, abundancia y diversidad consistiría en: (1) colocar 50-70 trampas para maximizar el número de especies detectadas, (2) muestrear entre 48 y 72 hrs y colocar grupos de trampas a lo largo de un transecto para estimar confiablemente la abundancia de las especies, (3) colocar siete grupos de al menos 10 trampas para registrar adecuadamente la composición de cada localidad y (4) separar los grupos de trampas por distancias mayores a 5-10km para minimizar la autocorrelación espacial.


Asunto(s)
Animales , Humanos , Escarabajos/clasificación , Biodiversidad , Entomología/métodos , Entomología/normas , Densidad de Población , Venezuela
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...